Related Papers in AAAI 2021 (Feb 02-09 2021)
anomaly detection [anomaly, outlier, out-of-distribution, one-class, Malware detection, …]
LREN: Low-Rank Embedded Network for Sample-Free Hyperspectral Anomaly Detection
Kai Jiang, Weiying Xie, Jie Lei, Tao Jiang, Yunsong Li
GAN Ensemble for Anomaly Detection
Xiaohui Chen, Xu Han, Liping Liu
Anomaly Attribution with Likelihood Compensation
Tsuyoshi Ide, Amit Dhurandhar, Jiri Navratil, Moninder Singh, Naoki Abe
Regularizing Attention Networks for Anomaly Detection in Visual Question Answering
Doyup Lee, Yeongjae Cheon, Wook-Shin Han
Appearance-Motion Memory Consistency Network for Video Anomaly Detection
Ruichu Cai, Hao Zhang, Wen Liu, Shenghua Gao, Zhifeng Hao
【看一下】 Learning Semantic Context from Normal Samples for Unsupervised Anomaly Detection
Xudong Yan, Huaidong Zhang, Xuemiao Xu, Xiaowei Hu, Pheng-Ann Heng
Graph Neural Network-Based Anomaly Detection in Multivariate Time Series
Ailin Deng, Bryan Hooi
【重点阅读】 Time Series Anomaly Detection with Multiresolution Ensemble Decoding
Lifeng Shen, Zhongzhong Yu, Qianli Ma, James Tin-Yau Kwok
【看一下】 Outlier Impact Characterization for Time Series Data
Jianbo Li, Lecheng Zheng, Yada Zhu, Jingrui He
Graph Neural Network to Dilute Outliers for Refactoring Monolith Application
Utkarsh Desai, Sambaran Bandyopadhyay, Srikanth Tamilselvam
Accelerated Combinatorial Search for Outlier Detection with Provable Bound on Sub-
OptimalityGuihong Wan, Haim Schweitzer
【看一下】 Neighborhood Consensus Networks for Unsupervised Multi-View Outlier Detection
Li Cheng, Yijie Wang, Xinwang Liu
DecAug: Out-of-Distribution Generalization via Decomposed Feature Representation and
Semantic AugmentationHaoyue Bai, Rui Sun, Lanqing Hong, Fengwei Zhou, Nanyang Ye, Han-Jia Ye, Gary Chan, Zhenguo Li
Few-Shot One-Class Classification via Meta-Learning
Ahmed Frikha, Denis Krompass, Hans-Georg Koepken, Volker Tresp
Classifying Sequences of Extreme Length with Constant Memory Applied to Malware
DetectionEdward Raff, William Fleshman, Richard J Zak, Hyrum Anderson, Bobby Filar, Mark McLean
Disentangled Representation Learning in Heterogeneous Information Network for Large-
Scale Android Malware Detection in the COVID-19 Era and BeyondShifu Hou, Yujie Fan, Mingxuan Ju, Yanfang Ye, Wenqiang Wan, Kui Wang, Yinming Mei, Qi Xiong,
Fudong Shao
heterogeneous
Embedding Heterogeneous Networks into Hyperbolic Space without Meta-‐Path
Lili Wang, Chongyang Gao, Chenghan Huang, Ruibo Liu, Weicheng Ma, Soroush Vosoughi
Synergetic Learning of Heterogeneous Temporal Sequences for Multi-‐Horizon Probabilistic Forecasting
Longyuan Li, Jihai Zhang, Junchi Yan, Yaohui Jin, Yunhao Zhang, Yanjie Duan, Guangjian Tian
Multi-‐Modal Multi-‐Label Emotion Recognition with Heterogeneous Hierarchical Message Passing
Dong Zhang, Xincheng Ju, Wei Zhang, Junhui Li, Shoushan Li, Zhu Qiaoming, Zhou Guodong
Heterogeneous Graph Structure Learning for Graph Neural Networks
Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, Yanfang Ye
Disentangled Representation Learning in Heterogeneous Information Network for Large-‐
Scale Android Malware Detection in the COVID-‐19 Era and BeyondShifu Hou, Yujie Fan, Mingxuan Ju, Yanfang Ye, Wenqiang Wan, Kui Wang, Yinming Mei, Qi Xiong, Fudong Shao
MERL: Multimodal Event Representation Learning in Heterogeneous Embedding Spaces
Linhai Zhang, Deyu Zhou, Yulan He, Zeng Yang
Modeling Heterogeneous Relations across Multiple Modes for Potential Crowd Flow Prediction
Qiang Zhou, Jingjing Gu, Xinjiang Lu, Fuzhen Zhuang, Yanchao Zhao, Qiuhong Wang, Xiao Zhang
【重要】 Infusing Multi-‐Source Knowledge with Heterogeneous Graph Neural Network for Emotional Conversation Generation
Yunlong Liang, Fandong Meng, Ying Zhang, Yufeng Chen, Jinan Xu, Jie Zhou
HARGAN: Heterogeneous Argument Attention Network for Persuasiveness Prediction
Kuo-‐Yu Huang, Hen-‐Hsen Huang, Hsin-‐Hsi Chen
Deep Innovation Protection: Confronting the Credit Assignment Problem in Training Heterogeneous Neural Architectures
Sebastian Risi, Kenneth O Stanley
Real-‐Time Tropical Cyclone Intensity Estimation by Handling Temporally Heterogeneous Satellite Data
Boyo Chen, Buo-‐Fu Chen, Yun-‐Nung Chen
Time series
Deep Switching Auto-Regressive Factorization: Application to Time Series Forecasting
Amirreza Farnoosh, Bahar Azari, Sarah Ostadabbas
【重点阅读】 Dynamic Gaussian Mixture Based Deep Generative Model for Robust Forecasting on Sparse
Multivariate Time SeriesYinjun Wu, Jingchao Ni, Wei Cheng, Bo Zong, Dongjin Song, Zhengzhang Chen, Yanchi Liu, Xuchao
Zhang, Haifeng Chen, Susan B DavidsonSecond Order Techniques for Learning Time-Series with Structural Breaks
Takayuki Osogami
Correlative Channel-Aware Fusion for Multi-View Time Series Classification
Yue Bai, Lichen Wang, Zhiqiang Tao, Sheng Li, Yun Fu
【看一下】 Learnable Dynamic Temporal Pooling for Time Series Classification
Dongha Lee, Seonghyeon Lee, Hwanjo Yu
Time Series Domain Adaptation via Sparse Associative Structure Alignment
Ruichu Cai, Jiawei Chen, Zijian Li, Wei Chen, Keli Zhang, Junjian Ye, Zhuozhang Li, Xiaoyan Yang,
Zhenjie Zhang【看一下】 Learning Representations for Incomplete Time Series Clustering
Qianli Ma, Chuxin Chen, Sen Li, Garrison Cottrell
Temporal Latent Autoencoder: A Method for Probabilistic Multivariate Time Series
ForecastingNam Nguyen, Brian Quanz
ShapeNet: A Shapelet-Neural Network Approach for Multivariate Time Series Classification
Guozhong Li, Byron Choi, Jianliang Xu, Sourav S Bhowmick, Kwok-Pan Chun, Grace Lai-Hung Wong
Joint-Label Learning by Dual Augmentation for Time Series Classification
Qianli Ma, Zhenjing Zheng, Jiawei Zheng, Sen Li, Wanqing Zhuang, Garrison Cottrell
【Best paper award】 Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, Wancai Zhang
Meta-Learning Framework with Applications to Zero-Shot Time-Series Forecasting
Boris N. Oreshkin, Dmitri Carpov, Chapados Nicolas, Yoshua Bengio
about deep learning
Deep Frequency Principle Towards Understanding Why Deeper Learning Is Faster
Zhiqin John Xu, Hanxu Zhou
Understanding Decoupled and Early Weight Decay
Johan Björck, Kilian Weinberger, Carla P Gomes
sequence
Copy That! Editing Sequences by Copying Spans
Sheena L Panthaplackel, Miltiadis Allamanis, Marc Brockschmidt
Semi-Supervised Knowledge Amalgamation for Sequence Classification
Jidapa Thadajarassiri, Thomas Hartvigsen, Xiangnan Kong, Elke Rundensteiner
Neural Sequence-to-Grid Module for Learning Symbolic Rules
Segwang Kim, Hyoungwook Nam, Joonyoung Kim, Kyomin Jung
Synergetic Learning of Heterogeneous Temporal Sequences for Multi-Horizon Probabilistic
ForecastingLongyuan Li, Jihai Zhang, Junchi Yan, Yaohui Jin, Yunhao Zhang, Yanjie Duan, Guangjian Tian
Semi-Supervised Sequence Classification through Change Point Detection
Nauman Ahad, Mark Davenport
Bridging Towers of Multi-Task Learning with a Gating Mechanism for Aspect-Based
Sentiment Analysis and Sequential Metaphor IdentificationRui Mao, Xiao Li
Deterministic Mini-Batch Sequencing for Training Deep Neural Networks
Subhankar Banerjee, Shayok Chakraborty
【看一下】 SeCo: Exploring Sequence Supervision for Unsupervised Representation Learning
Ting Yao, Yiheng Zhang, Zhaofan Qiu, Yingwei Pan, Tao Mei
Answering Complex Queries in Knowledge Graphs with Bidirectional Sequence Encoders
Bhushan Kotnis, Carolin Lawrence, Mathias Niepert
Residual Shuffle-Exchange Networks for Fast Processing of Long Sequences
Andis Draguns, Emīls Ozoliņš, Agris Šostaks, Matīss Apinis, Karlis Freivalds
Entity Guided Question Generation with Contextual Structure and Sequence Information
CapturingQingbao Huang, Mingyi Fu, Linzhang Mo, Yi Cai, Jingyun Xu, Pijian Li, Qing Li, Ho-fung Leung
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-
Generation NetworksCunchao Zhu, Muhao Chen, Changjun Fan, Guangquan Cheng, Yan Zhang
【看一下】 Continuous-Time Attention for Sequential Learning
Yi-Hsiang Chen, Jen-Tzung Chien
Interpretable Sequence Classification via Discrete Optimization
Maayan Shvo, Andrew C Li, Rodrigo A Toro Icarte, Sheila A. McIlraith
interpretable [Understanding, explanation, Attribution …]
Building Interpretable Interaction Trees for Deep NLP Models
Die Zhang, HuiLin Zhou, Xiaoyi Bao, Da Huo, Ruizhao Chen, Hao Zhang, Xu Cheng, Mengyue Wu,
Quanshi ZhangInterpretable Embedding Procedure Knowledge Transfer via Stacked Principal Component
Analysis and Graph Neural NetworkSeunghyun Lee, Byung Cheol Song
Interpreting Neural Networks as Quantitative Argumentation Frameworks
Nico Potyka
Interpretable Clustering on Dynamic Graphs with Recurrent Graph Neural Networks
Yuhang Yao, Carlee Joe-Wong
Interpreting Deep Neural Networks with Relative Sectional Propagation by Analyzing
Comparative Gradients and Hostile ActivationsWoo Jeoung Nam, Jaesik Choi, Seong-Whan Lee
Human-Level Interpretable Learning for Aspect-Based Sentiment Analysis
Rohan K Yadav, Lei Jiao, Ole-Christoffer Granmo, Morten Goodwin
Learning Accurate and Interpretable Decision Rule Sets from Neural Networks
Litao Qiao, Weijia Wang, Bill Lin
Learning Interpretable Models for Couple Networks under Domain Constraints
Hongyuan You, Sikun Lin, Ambuj Singh
Explanation Consistency Training: Facilitating Consistency-Based Semi-Supervised Learning
with InterpretabilityTao Han, Wei-Wei Tu, Yu-Feng Li
i-Algebra: Towards Interactive Interpretability of Deep Neural Networks
Xinyang Zhang, Pang Ren, Shouling Ji, Fenglong Ma, Ting Wang
【看一下】 Explainable Models with Consistent Interpretations
Vipin Pillai, Hamed Pirsiavash
Iterative Bounding MDPs: Learning Interpretable Policies via Non-Interpretable Methods
Nicholay Topin, Stephanie Milani, Fei Fang, Manuela Veloso
HyDRA: Hypergradient Data Relevance Analysis for Interpreting Deep Neural Networks
Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, Chunyan Miao
Interpreting Multivariate Shapley Interactions in DNNs
Hao Zhang, Yichen Xie, Longjie Zheng, Die Zhang, Quanshi Zhang
【看一下】 Self-Attention Attribution: Interpreting Information Interactions Inside Transformer
Yaru Hao, Li Dong, Furu Wei, Ke Xu
Interpretable Sequence Classification via Discrete Optimization
Maayan Shvo, Andrew C Li, Rodrigo A Toro Icarte, Sheila A. McIlraith
【看一下】 The Heads Hypothesis: A Unifying Statistical Approach towards Understanding Multi-Headed
Attention in BERTMadhura Pande, Aakriti Budhraja, Preksha Nema, Pratyush Kumar, Mitesh M. Khapra
Ordered Counterfactual Explanation by Mixed-Integer Linear Optimization
Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike, Kento Uemura, Hiroki Arimura
Strong Explanations in Abstract Argumentation
Markus Ulbricht, Johannes Peter Wallner
On Generating Plausible Counterfactual and Semi-Factual Explanations for Deep Learning
Eoin Kenny, Mark Keane
The Tractability of SHAP-Score-Based Explanations for Classification over Deterministic and
Decomposable Boolean CircuitsMarcelo Arenas, Pablo Barceló, Leopoldo Bertossi, Mikaël Monet
On the Tractability of SHAP Explanations
Guy Van den Broeck, Anton Lykov, Maximilian Schleich, Dan Suciu
Responsibility Attribution in Parameterized Markovian Models
Christel Baier, Florian Funke, Rupak Majumdar
A Unified Taylor Framework for Revisiting Attribution Methods
Huiqi Deng, Na Zou, Mengnan Du, Weifu Chen, Guocan Feng, Xia Hu
【看一下】 Explaining Convolutional Neural Networks through Attribution-Based Input Sampling and
Block-Wise Feature AggregationSam Sattarzadeh, Mahesh Sudhakar, Anthony Lem, Shervin Mehryar, Konstantinos N Plataniotis,
Jongseong Jang, Hyunwoo Kim, Yeonjeong Jeong, SangMin Lee, Kyunghoon Bae【看一下】 Visualization of Supervised and Self-Supervised Neural Networks via Attribution Guided
FactorizationShir Gur, Ameen Ali, Lior Wolf
Enhanced Regularizers for Attributional Robustness
Anindya Sarkar, Anirban Sarkar, Vineeth N Balasubramanian
【看一下】 Explaining a Black-Box by Using a Deep Variational information Bottleneck Approach
Seojin Bang, Pengtao Xie, Heewook Lee, Wei Wu, Eric Xing
Explaining Neural Matrix Factorization with Gradient Rollback
Carolin Lawrence, Timo Sztyler, Mathias Niepert
Autoencoder
Content Learning with Structure-Aware Writing: A Graph-Infused Dual Conditional
Variational Autoencoder for Automatic StorytellingMeng Hsuan Yu, Juntao Li , Zhangming Chan, Dongyan Zhao, Rui Yan
【看一下】 HOT-VAE: Learning High-Order Label Correlation for Multi-LabelClassification via Attention-
Based Variational AutoencodersWenting Zhao, Shufeng Kong, Junwen Bai, Daniel Fink, Carla P Gomes
Fractal Autoencoders for Feature Selection
Xinxing Wu, Qiang Cheng
Temporal Latent Autoencoder: A Method for Probabilistic Multivariate Time Series
ForecastingNam Nguyen, Brian Quanz
Open-Set Recognition with Gaussian Mixture Variational Autoencoders
Alexander Cao, Yuan Luo, Diego Klabjan
Unsupervised Learning of Discourse Structures Using a Tree Autoencoder
Patrick Huber, Giuseppe Carenini
missing value & irregularly sampled time series [Incomplete, imputation, …]
Generative Semi-Supervised Learning for Multivariate Time Series Imputation
Xiaoye Miao, Yangyang Wu, Jun Wang, Yunjun Gao, Xudong Mao, Jianwei Yin
Tripartite Collaborative Filtering with Observability and Selection for Debiasing Rating
Estimation on Missing-Not-at-Random DataQi Zhang, Longbing Cao, Chongyang Shi, Liang Hu
Unified Tensor Framework for Incomplete Multi-View Clustering and Missing-View Inferring
Jie Wen, Zheng Zhang, Zhao Zhang, Lei Zhu, Lunke Fei, Bob Zhang, Yong Xu
Quantification of Resource Production Incompleteness
Yakoub Salhi
【看一下】 Learning Representations for Incomplete Time Series Clustering
Qianli Ma, Chuxin Chen, Sen Li, Garrison Cottrell
The Parameterized Complexity of Clustering Incomplete Data
Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, Stefan Szeider
Restricted Domains of Dichotomous Preferences with Possibly Incomplete Information
Zoi Terzopoulou, Alexander Karpov, Svetlana Obraztsova
Estimating the Number of Induced Subgraphs from Incomplete Data and Neighborhood
QueriesDimitris Fotakis, Thanasis Pittas, Stratis Skoulakis
Recurrent Neural Network
这部分都可以看一下
Shuffling Recurrent Neural Networks
Michael Rotman, Lior Wolf
Memory-Gated Recurrent Networks
Yaquan Zhang, Qi Wu, Nanbo Peng, Min Dai, Jing Zhang, Hu Wang
On the Softmax Bottleneck of Recurrent Language Models
Dwarak Govind Parthiban, Yongyi Mao, Diana Inkpen
Forecasting Reservoir Inflow via Recurrent Neural ODEs
Fan Zhou, Liang Li
clustering
Hierarchical Multiple Kernel Clustering
Jiyuan Liu, Xinwang Liu, Siwei Wang, Sihang Zhou, Yuexiang Yang
Interpretable Clustering on Dynamic Graphs with Recurrent Graph Neural Networks
Yuhang Yao, Carlee Joe-Wong
Clustering Ensemble Meets Low-Rank Tensor Approximation
Yuheng Jia, Hui Liu, Junhui Hou, Qingfu Zhang
Contrastive Clustering
Yunfan Li, Peng Hu, Zitao Liu, Dezhong Peng, Joey Tianyi Zhou, Xi Peng
GoT: a Growing Tree Model for Clustering Ensemble
Feijiang Li, Yuhua Qian, Jieting Wang
Unified Tensor Framework for Incomplete Multi-View Clustering and Missing-View Inferring
Jie Wen, Zheng Zhang, Zhao Zhang, Lei Zhu, Lunke Fei, Bob Zhang, Yong Xu
LRSC: Learning Representations for Subspace Clustering
Changsheng Li, Chen Yang, Bo Liu, Ye Yuan, Guoren Wang
Automated Clustering of High-Dimensional Data with a Feature Weighted Mean-Shift
AlgorithmSaptarshi Chakraborty, Debolina Paul, Swagatam Das
Learning Representations for Incomplete Time Series Clustering
Qianli Ma, Chuxin Chen, Sen Li, Garrison Cottrell
Multiple Kernel Clustering with Kernel k-Means Coupled Graph Tensor Learning
Zhenwen Ren, Quansen Sun, Dong Wei
Tri-Level Robust Clustering Ensemble with Multiple Graph Learning
Peng Zhou, Liang Du, Yi-Dong Shen, Xuejun Li
Deep Mutual Information Maximin for Cross-Modal Clustering
Yiqiao Mao, Xiaoqiang Yan, Qiang Guo, Yangdong Ye
Fairness, Semi-Supervised Learning, and More: A General Framework for Clustering with
Stochastic Pairwise ConstraintsBrian Brubach, Darshan Chakrabarti, John P Dickerson, Aravind Srinivasan, Leonidas Tsepenekas
Deep Fusion Clustering Network
Wenxuan Tu, Sihang Zhou, Xinwang Liu, Xifeng Guo, Zhiping Cai, En Zhu, Jieren Cheng
The Parameterized Complexity of Clustering Incomplete Data
Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, Stefan Szeider
Objective-Based Hierarchical Clustering of Deep Embedding Vectors
Dmitrii Avdiukhin, Stanislav Naumov, Grigory Yaroslavtsev
Variational Fair Clustering
Imtiaz Masud Ziko, Jing Yuan, Eric Granger, Ismail Ben Ayed
Extreme k-Center Clustering
MohammadHossein Bateni, Hossein Esfandiari, Manuela Fischer, Vahab Mirrokni
Differentially Private Clustering via Maximum Coverage
Matthew Jones, Huy Nguyen, Thy D Nguyen
data augmentation
AttaNet: Attention-Augmented Network for Fast and Accurate Scene Parsing
Qi Song, Kangfu Mei, Rui Huang
How Does Data Augmentation Affect Privacy in Machine Learning?
Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, Tie-Yan Liu
SnapMix: Semantically Proportional Mixing for Augmenting Fine-Grained Data
Shaoli Huang, Xinchao Wang, Dacheng Tao
Inferring Emotion from Large-Scale Internet Voice Data: A Semi-Supervised Curriculum
Augmentation Based Deep Learning ApproachSuping Zhou, Jia Jia, Zhiyong Wu, Zhihan Yang, Yanfeng Wang, Wei Chen, Fanbo Meng, Shuo
Huang, Jialie Shen, Xiaochuan WangKernel-Convoluted Deep Neural Networks with Data Augmentation
Minjin Kim, Young-geun Kim, Dongha Kim, Yongdai Kim, Myunghee Cho Paik
Improving Commonsense Causal Reasoning by Adversarial Training and Data Augmentation
Ignacio Iacobacci, Ieva Staliūnaitė, Philip John Gorinski
Self-Supervised Multi-View Stereo via Effective Co-Segmentation and Data-Augmentation
Hongbin Xu, Zhipeng Zhou, Yu Qiao, Wenxiong Kang, Qiuxia Wu
Joint-Label Learning by Dual Augmentation for Time Series Classification
Qianli Ma, Zhenjing Zheng, Jiawei Zheng, Sen Li, Wanqing Zhuang, Garrison Cottrell
Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-
TrainingPeng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Cicero Nogueira
dos Santos, Bing XiangTwo-Stream Convolution Augmented Transformer for Human Activity Recognition
Bing Li, Wei Cui, Wei Wang, Le Zhang, Zhenghua Chen, Min Wu
Data Augmentation for Graph Neural Networks
Tong Zhao, Yozen Liu, Leonardo Neves, Oliver J Woodford, Meng Jiang, Neil Shah
About distribution
Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for Thoracic Disease
IdentificationYi Zhou, Lei Huang, Tianfei Zhou, Ling Shao
Robust Lightweight Facial Expression Recognition Network with Label Distribution Training
Zengqun Zhao, Qingshan Liu, Feng Zhou
Wasserstein Distributionally Robust Inverse Multiobjective Optimization
Chaosheng Dong, Bo Zeng
The Gap on Gap: Tackling the Problem of Differing Data Distributions in Bias-Measuring
DatasetsVid Kocijan, Oana-Maria Camburu, Thomas Lukasiewicz
- 1. anomaly detection [anomaly, outlier, out-of-distribution, one-class, Malware detection, …]
- 2. heterogeneous
- 3. Time series
- 4. about deep learning
- 5. sequence
- 6. interpretable [Understanding, explanation, Attribution …]
- 7. Autoencoder
- 8. missing value & irregularly sampled time series [Incomplete, imputation, …]
- 9. Recurrent Neural Network
- 10. clustering
- 11. data augmentation
- 12. About distribution