Related Papers in ACL 2020 (2020.07.06)
Recurrent Neural Network
Generating Informative Conversational Response using Recurrent Knowledge-Interaction and Knowledge-Copy
Xiexiong Lin, Weiyu Jian, Jianshan He, Taifeng Wang and Wei Chu
MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning
Jie Lei, Liwei Wang, Yelong Shen, Dong Yu, Tamara Berg and Mohit Bansal
Recurrent Chunking Mechanisms for Long-Text Machine Reading Comprehension
Hongyu Gong, Yelong Shen, Dian Yu, Jianshu Chen and Dong Yu
Recurrent Neural Network Language Models Always Learn English-Like Relative Clause Attachment
Forrest Davis and Marten van Schijndel
Synchronous Double-channel Recurrent Network for Aspect-Opinion Pair Extraction
Shaowei Chen, Jie Liu, Yu Wang, Wenzheng Zhang and Ziming Chi
Autoencoder
Autoencoding Pixies: Amortised Variational Inference with Graph Convolutions for Functional Distributional Semantics
Guy Emerson
Evidence-Aware Inferential Text Generation with Vector Quantised Variational AutoEncoder
Daya Guo, Duyu Tang, Nan Duan, Jian Yin, Daxin Jiang and Ming Zhou
Semi-Supervised Semantic Dependency Parsing Using CRF Autoencoders
Zixia Jia, Youmi Ma, Jiong Cai and Kewei Tu
Autoencoding Keyword Correlation Graph for Document Clustering
Billy Chiu, Sunil Kumar Sahu, Derek Thomas, Neha Sengupta and Mohammady Mahdy
Crossing Variational Autoencoders for Answer Retrieval
Wenhao Yu, Lingfei Wu, Qingkai Zeng, Shu Tao, Yu Deng and Meng Jiang
Interpretable Operational Risk Classification with Semi-Supervised Variational Autoencoder
Fan Zhou, Shengming Zhang and Yi Yang
SCAR: Sentence Compression using Autoencoders for Reconstruction
Chanakya Malireddy, Tirth Maniar and Manish Shrivastava
LSTM
Inducing Grammar from Long Short-Term Memory Networks by Shapley Decomposition
Yuhui Zhang and Allen Nie
Sequence
A Study of Non-autoregressive Model for Sequence Generation
Yi Ren, Jinglin Liu, Xu Tan, Zhou Zhao, Sheng Zhao and Tie-Yan Liu
已读 BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov and Luke Zettlemoyer
Conditional Augmentation for Aspect Term Extraction via Masked Sequence-to-Sequence Generation
Kun Li, Chengbo Chen, Xiaojun Quan, Qing Ling and Yan Song
DeSePtion: Dual Sequence Prediction and Adversarial Examples for Improved Fact-Checking
Christopher Hidey, Tuhin Chakrabarty, Tariq Alhindi, Siddharth Varia, Kriste Krstovski, Mona Diab and Smaranda Muresan
Estimating the influence of auxiliary tasks for multi-task learning of sequence tagging tasks
Fynn Schröder and Chris Biemann
Jointly Masked Sequence-to-Sequence Model for Non-Autoregressive Neural Machine Translation
Junliang Guo, Linli Xu and Enhong Chen
Location Attention for Extrapolation to Longer Sequences
Yann Dubois, Gautier Dagan, Dieuwke Hupkes and Elia Bruni
NAT: Noise-Aware Training for Robust Neural Sequence Labeling
Marcin Namysl, Sven Behnke and Joachim Köhler
SeqVAT: Virtual Adversarial Training for Semi-Supervised Sequence Labeling
Luoxin Chen, Weitong Ruan, Xinyue Liu and Jianhua Lu
Structure-Level Knowledge Distillation For Multilingual Sequence Labeling
Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang, Fei Huang and Kewei Tu
Enriched In-Order Linearization for Faster Sequence-to-Sequence Constituent Parsing
Daniel Fernández-González and Carlos Gómez-Rodríguez
Low Resource Sequence Tagging using Sentence Reconstruction
Tal Perl, Sriram Chaudhury and Raja Giryes
Embeddings of Label Components for Sequence Labeling: A Case Study of Fine-grained Named Entity Recognition
Takuma Kato, Kaori Abe, Hiroki Ouchi, Shumpei Miyawaki, Jun Suzuki and Kentaro Inui
Data augmentation
AdvAug: Robust Adversarial Augmentation for Neural Machine Translation
Yong Cheng, Lu Jiang, Wolfgang Macherey and Jacob Eisenstein
Conditional Augmentation for Aspect Term Extraction via Masked Sequence-to-Sequence Generation
Kun Li, Chengbo Chen, Xiaojun Quan, Qing Ling and Yan Song
Good-Enough Compositional Data Augmentation
Jacob Andreas
由于语言任务中的某些模式具有通用性,为了让神经网络学习到这些通用性,从而提出这种增强方法,具体方法:
- 分析数据集中的语言模式,即在同样的语言环境中出现的不同词句,这些不同字句就是需要被学习到的通用性,下面是一对例子。
- She picks the wug up in Fresno.
- She puts the wug down in Tempe.
- 在这个例子中,粗体部分代表着同样的语言环境,则斜体部分则为需要学习到的通用性,在网络受到1的句子的时候,也需要具备推导出2中斜体部分内容的能力。
Review-based Question Generation with Adaptive Instance Transfer and Augmentation
Qian Yu, Lidong Bing, Qiong Zhang, Wai Lam and Luo Si
Logic-Guided Data Augmentation and Regularization for Consistent Question Answering
Akari Asai and Hannaneh Hajishirzi
Parallel Data Augmentation for Formality Style Transfer
Yi Zhang, Tao Ge and Xu SUN
Syntactic Data Augmentation Increases Robustness to Inference Heuristics
Junghyun Min, R. Thomas McCoy, Dipanjan Das, Emily Pitler and Tal Linzen
Noise-Based Augmentation Techniques for Emotion Datasets: What do we Recommend?
Mimansa Jaiswal and Emily Mower Provost