Related Papers in ICLR 2020 (2020.04.26)

2020/04/26 00:00:00 2020/04/26 00:00:00 paper list

Link

Anomaly

  • 已读 Deep Semi-Supervised Anomaly Detection

    Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel Müller, Klaus-Robert Müller, Marius Kloft

  • 已读Iterative energy-based projection on a normal data manifold for anomaly localization

    David Dehaene, Oriel Frigo, Sébastien Combrexelle, Pierre Eline

    任务:文章中说是异常定位,其实也可以看做异常归因,且针对以VAE/AE为基本结构的异常检测器均有效(个人理解对使用ONE CLASS方法训练、借助重建误差计算异常得分的方法均有效)。

    基本流程

    1. 本文假设使用一个VAE结构做ONE CLASS训练,即建模正常数据的重建与分布。Loss函数为: $L = L_{reconstruction} + L_{KL(p,q)}$

    2. 由于上述的loss函数最小化了网络对于正常样本的相应。因此,针对任意一个异常样本$x_a$,将网络对其的相应$L(x)$做最小化,即可将$x_a$转换它的正常版本$x_n$。在这种假设下,网络的loss函数即为样本的异常得分。

    3. 定义异常定位的最优化目标$E = L$,由于有工作表明$L_{KL}$对计算异常得分有负面作用,因此将loss函数中的此项去掉。即$E = L_{reconstruction}$。

    4. 由于定位的目标是仅使得样本中异常的部分被指出。而非改变整个样本的形态到类似训练样本的样子,所以要加上正则项,控制正常版本的样本与原异常样本之间的相似度,即 $L_{regularization} = \left| x_n - x_a \right| 0 $,然而由于L0不可导,因此使用L1作为近似,即$L{regularization} = \left| x_n - x_a \right|1 $。即用于定位异常的优化目标energy为$E = L{reconstruction} + \left| x_n - x_a \right|1 $,上式中的$x_n$等同于下面表述的$x{old}$。

    5. 如何迭代式的将$x_a$转为$x_n$?定义梯度下降操作$x_{new} = x_{old} - \alpha * \nabla _x (E)$

    6. 由于仅需要对异常的像素进行更新,所以在上述公式上加一层Mask,即$x_{new} = x_{old} - \alpha * (\nabla x (E) \odot Mask)$,但是在无监督的情况下,$Mask$是未知的,因此使用像素级的重建误差来代替。则样本更新公式为$x{new} = x_{old} - \alpha * (\nabla x (E) \odot (x{old} - f_{VAE}(x_{old}))^2)$

    Optimizing the energy this way, a pixel where the reconstruction error is high will update faster, whereas a pixel with good reconstruction
    will not change easily. This prevents the image to update its pixels where the reconstruction is already good, even with a high learning rate.

  • 已读 Robust anomaly detection and backdoor attack detection via differential privacy

    Min Du, Ruoxi Jia, Dawn Song

  • Classification-Based Anomaly Detection for General Data General Data: 多种数据类型,图像、xxx等等

    Liron Bergman, Yedid Hoshen

  • 已读 Robust Subspace Recovery Layer for Unsupervised Anomaly Detection

    Chieh-Hsin Lai, Dongmian Zou, Gilad Lerman

  • Attention Guided Anomaly Detection and Localization in ImagesArXiv2019

    Shashanka VenkataramananKuan-Chuan PengRajat Vikram SinghAbhijit Mahalanobis

Sequence

  • Are Transformers universal approximators of sequence-to-sequence functions?

    Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, Sanjiv Kumar

  • DeFINE: Deep Factorized Input Token Embeddings for Neural Sequence Modeling

  • Revisiting Self-Training for Neural Sequence Generation

    Junxian He, Jiatao Gu, Jiajun Shen, Marc’Aurelio Ranzato

  • Adaptive Correlated Monte Carlo for Contextual Categorical Sequence Generation

    Xinjie Fan, Yizhe Zhang, Zhendong Wang, Mingyuan Zhou

  • Compressive Transformers for Long-Range Sequence Modelling

    Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Chloe Hillier, Timothy P. Lillicrap

  • Model-based reinforcement learning for biological sequence design

    Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, Lucy Colwell

  • Towards Hierarchical Importance Attribution: Explaining Compositional Semantics for Neural Sequence Models

    Xisen Jin, Zhongyu Wei, Junyi Du, Xiangyang Xue, Xiang Ren

Time Series

  • 已读 N-BEATS: Neural basis expansion analysis for interpretable time series forecasting 可解释性上的工作

    Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, Yoshua Bengio

  • Dynamic Time Lag Regression: Predicting What & When

    Mandar Chandorkar, Cyril Furtlehner, Bala Poduval, Enrico Camporeale, Michele Sebag

  • Intensity-Free Learning of Temporal Point Processes

    Oleksandr Shchur, Marin Biloš, Stephan Günnemann

Recurrent

  • Variational Recurrent Models for Solving Partially Observable Control Tasks

    Dongqi Han, Kenji Doya, Jun Tani

  • One-Shot Pruning of Recurrent Neural Networks by Jacobian Spectrum Evaluation

    Shunshi Zhang, Bradly C. Stadie

  • Recurrent neural circuits for contour detection

    Drew Linsley*, Junkyung Kim*, Alekh Ashok, Thomas Serre

  • Improved memory in recurrent neural networks with sequential non-normal dynamics 是否可以使用non-normal来描述我们的工作中的系统

    Emin Orhan, Xaq Pitkow

  • Economy Statistical Recurrent Units For Inferring Nonlinear Granger Causality

    Saurabh Khanna, Vincent Y. F. Tan

  • Decoding As Dynamic Programming For Recurrent Autoregressive Models

    Najam Zaidi, Trevor Cohn, Gholamreza Haffari

  • Training Recurrent Neural Networks Online by Learning Explicit State Variables

    Somjit Nath, Vincent Liu, Alan Chan, Xin Li, Adam White, Martha White

  • Understanding Generalization in Recurrent Neural Networks

    Zhuozhuo Tu, Fengxiang He, Dacheng Tao

  • RNNs Incrementally Evolving on an Equilibrium Manifold: A Panacea for Vanishing and Exploding Gradients?

    Anil Kag, Ziming Zhang, Venkatesh Saligrama

  • Implementing Inductive bias for different navigation tasks through diverse RNN attrractors

    Tie XU, Omri Barak

  • Symplectic Recurrent Neural Networks

    Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, Léon Bottou

Interpretable

  • Overlearning Reveals Sensitive Attributes

    Congzheng Song, Vitaly Shmatikov

  • Explain Your Move: Understanding Agent Actions Using Specific and Relevant Feature Attribution

    Nikaash Puri, Sukriti Verma, Piyush Gupta, Dhruv Kayastha, Shripad Deshmukh, Balaji Krishnamurthy, Sameer Singh

Autoencoder

  • 已读 From Variational to Deterministic Autoencoders

    Partha Ghosh, Mehdi S. M. Sajjadi, Antonio Vergari, Michael Black, Bernhard Scholkopf

  • MIXED-CURVATURE VARIATIONAL AUTOENCODERS

  • Mogrifier LSTM

    Gábor Melis, Tomáš Kočiský, Phil Blunsom

Data augmentation

  • ReMixMatch: Semi-Supervised Learning with Distribution Matching and Augmentation Anchoring

    David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang, Colin Raffel