Related Papers in ICLR 2020 (2020.04.26)
Anomaly
已读 Deep Semi-Supervised Anomaly Detection
Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel Müller, Klaus-Robert Müller, Marius Kloft
已读Iterative energy-based projection on a normal data manifold for anomaly localization
David Dehaene, Oriel Frigo, Sébastien Combrexelle, Pierre Eline
任务:文章中说是异常定位,其实也可以看做异常归因,且针对以VAE/AE为基本结构的异常检测器均有效(个人理解对使用ONE CLASS方法训练、借助重建误差计算异常得分的方法均有效)。
基本流程:
本文假设使用一个VAE结构做ONE CLASS训练,即建模正常数据的重建与分布。Loss函数为: $L = L_{reconstruction} + L_{KL(p,q)}$
由于上述的loss函数最小化了网络对于正常样本的相应。因此,针对任意一个异常样本$x_a$,将网络对其的相应$L(x)$做最小化,即可将$x_a$转换它的正常版本$x_n$。在这种假设下,网络的loss函数即为样本的异常得分。
定义异常定位的最优化目标$E = L$,由于有工作表明$L_{KL}$对计算异常得分有负面作用,因此将loss函数中的此项去掉。即$E = L_{reconstruction}$。
由于定位的目标是仅使得样本中异常的部分被指出。而非改变整个样本的形态到类似训练样本的样子,所以要加上正则项,控制正常版本的样本与原异常样本之间的相似度,即 $L_{regularization} = \left| x_n - x_a \right| 0 $,然而由于L0不可导,因此使用L1作为近似,即$L{regularization} = \left| x_n - x_a \right|1 $。即用于定位异常的优化目标energy为$E = L{reconstruction} + \left| x_n - x_a \right|1 $,上式中的$x_n$等同于下面表述的$x{old}$。
如何迭代式的将$x_a$转为$x_n$?定义梯度下降操作$x_{new} = x_{old} - \alpha * \nabla _x (E)$
由于仅需要对异常的像素进行更新,所以在上述公式上加一层Mask,即$x_{new} = x_{old} - \alpha * (\nabla x (E) \odot Mask)$,但是在无监督的情况下,$Mask$是未知的,因此使用像素级的重建误差来代替。则样本更新公式为$x{new} = x_{old} - \alpha * (\nabla x (E) \odot (x{old} - f_{VAE}(x_{old}))^2)$
Optimizing the energy this way, a pixel where the reconstruction error is high will update faster, whereas a pixel with good reconstruction
will not change easily. This prevents the image to update its pixels where the reconstruction is already good, even with a high learning rate.已读 Robust anomaly detection and backdoor attack detection via differential privacy
Min Du, Ruoxi Jia, Dawn Song
Classification-Based Anomaly Detection for General Data General Data: 多种数据类型,图像、xxx等等
Liron Bergman, Yedid Hoshen
已读 Robust Subspace Recovery Layer for Unsupervised Anomaly Detection
Chieh-Hsin Lai, Dongmian Zou, Gilad Lerman
Attention Guided Anomaly Detection and Localization in ImagesArXiv2019
Shashanka VenkataramananKuan-Chuan PengRajat Vikram SinghAbhijit Mahalanobis
Sequence
Are Transformers universal approximators of sequence-to-sequence functions?
Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, Sanjiv Kumar
DeFINE: Deep Factorized Input Token Embeddings for Neural Sequence Modeling
Revisiting Self-Training for Neural Sequence Generation
Junxian He, Jiatao Gu, Jiajun Shen, Marc’Aurelio Ranzato
Adaptive Correlated Monte Carlo for Contextual Categorical Sequence Generation
Xinjie Fan, Yizhe Zhang, Zhendong Wang, Mingyuan Zhou
Compressive Transformers for Long-Range Sequence Modelling
Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Chloe Hillier, Timothy P. Lillicrap
Model-based reinforcement learning for biological sequence design
Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, Lucy Colwell
Towards Hierarchical Importance Attribution: Explaining Compositional Semantics for Neural Sequence Models
Xisen Jin, Zhongyu Wei, Junyi Du, Xiangyang Xue, Xiang Ren
Time Series
已读 N-BEATS: Neural basis expansion analysis for interpretable time series forecasting 可解释性上的工作
Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, Yoshua Bengio
Dynamic Time Lag Regression: Predicting What & When
Mandar Chandorkar, Cyril Furtlehner, Bala Poduval, Enrico Camporeale, Michele Sebag
Intensity-Free Learning of Temporal Point Processes
Oleksandr Shchur, Marin Biloš, Stephan Günnemann
Recurrent
Variational Recurrent Models for Solving Partially Observable Control Tasks
Dongqi Han, Kenji Doya, Jun Tani
One-Shot Pruning of Recurrent Neural Networks by Jacobian Spectrum Evaluation
Shunshi Zhang, Bradly C. Stadie
Recurrent neural circuits for contour detection
Drew Linsley*, Junkyung Kim*, Alekh Ashok, Thomas Serre
Improved memory in recurrent neural networks with sequential non-normal dynamics 是否可以使用non-normal来描述我们的工作中的系统
Emin Orhan, Xaq Pitkow
Economy Statistical Recurrent Units For Inferring Nonlinear Granger Causality
Saurabh Khanna, Vincent Y. F. Tan
Decoding As Dynamic Programming For Recurrent Autoregressive Models
Najam Zaidi, Trevor Cohn, Gholamreza Haffari
Training Recurrent Neural Networks Online by Learning Explicit State Variables
Somjit Nath, Vincent Liu, Alan Chan, Xin Li, Adam White, Martha White
Understanding Generalization in Recurrent Neural Networks
Zhuozhuo Tu, Fengxiang He, Dacheng Tao
RNNs Incrementally Evolving on an Equilibrium Manifold: A Panacea for Vanishing and Exploding Gradients?
Anil Kag, Ziming Zhang, Venkatesh Saligrama
Implementing Inductive bias for different navigation tasks through diverse RNN attrractors
Tie XU, Omri Barak
Symplectic Recurrent Neural Networks
Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, Léon Bottou
Interpretable
Overlearning Reveals Sensitive Attributes
Congzheng Song, Vitaly Shmatikov
Explain Your Move: Understanding Agent Actions Using Specific and Relevant Feature Attribution
Nikaash Puri, Sukriti Verma, Piyush Gupta, Dhruv Kayastha, Shripad Deshmukh, Balaji Krishnamurthy, Sameer Singh
Autoencoder
已读 From Variational to Deterministic Autoencoders
Partha Ghosh, Mehdi S. M. Sajjadi, Antonio Vergari, Michael Black, Bernhard Scholkopf
MIXED-CURVATURE VARIATIONAL AUTOENCODERS
Mogrifier LSTM
Gábor Melis, Tomáš Kočiský, Phil Blunsom
Data augmentation
ReMixMatch: Semi-Supervised Learning with Distribution Matching and Augmentation Anchoring
David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang, Colin Raffel