Related Papers in IJCAI 2020 (2021.01)

2020/01/18 00:00:00 2020/01/18 00:00:00 paper list

Link

Time Series

  • 计划阅读 A new attention mechanism to classify multivariate time series

    Yifan Hao, Huiping Cao

  • The Squawk Bot: Joint Learning of Time Series and Text Data Modalities for Automated Financial Information Filtering

    Xuan-Hong Dang, Syed Yousaf Shah, Petros Zerfos

  • A Quantum-inspired Entropic Kernel for Multiple Financial Time Series Analysis

    Lu Bai, Lixin Cui, Yue Wang, Yuhang Jiao, Edwin R. Hancock

  • WATTNet: Learning to Trade FX via Hierarchical Spatio-Temporal Representation of Highly Multivariate Time Series

    Michael Poli, Jinkyoo Park, Ilija Ilievski

  • Fair Division of Time: Multi-layered Cake Cutting

    Hadi Hosseini, Ayumi Igarashi, Andrew Searns

  • A new attention mechanism to classify multivariate time series

    Yifan Hao, Huiping Cao

  • Joint Time-Frequency and Time Domain Learning for Speech Enhancement

    Chuanxin Tang, Chong Luo, Zhiyuan Zhao, Wenxuan Xie, Wenjun Zeng

  • Generating Robust Audio Adversarial Examples with Temporal Dependency

    Hongting Zhang, Pan Zhou, Qiben Yan, Xiao-Yang Liu

missing value

  • A Spatial Missing Value Imputation Method for Multi-view Urban Statistical Data

    Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Bei Chen, Xiangjun Dong

Recurrent

  • A Structured Latent Variable Recurrent Network with Stochastic Attention for Generating Weibo Comments

    Shijie Yang, Liang Li, Shuhui Wang, Weigang Zhang, Qingming Huang, Qi Tian

  • Recurrent Relational Memory Network for Unsupervised Image Captioning

    Dan Guo, Yang Wang, Peipei Song, Meng Wang

  • Recurrent Dirichlet Belief Networks for interpretable Dynamic Relational Data Modelling

    Yaqiong Li, Xuhui Fan, Ling Chen, Bin Li, Zheng Yu, Scott A. Sisson

Sequence

  • Seq-U-Net: A One-Dimensional Causal U-Net for Efficient Sequence Modelling

    Daniel Stoller, Mi Tian, Sebastian Ewert, Simon Dixon

  • Hierarchical Attention Based Spatial-Temporal Graph-to-Sequence Learning for Grounded Video Description

    Kai Shen, Lingfei Wu, Fangli Xu, Siliang Tang, Jun Xiao, Yueting Zhuang

  • Discovering Subsequence Patterns for Next POI Recommendation

    Kangzhi Zhao, Yong Zhang, Hongzhi Yin, Jin Wang, Kai Zheng, Xiaofang Zhou, Chunxiao Xing

  • Multi-Scale Group Transformer for Long Sequence Modeling in Speech Separation

    Yucheng Zhao, Chong Luo, Zheng-Jun Zha, Wenjun Zeng

Anomaly Detection

  • Towards a Hierarchical Bayesian Model of Multi-View Anomaly Detection

    Zhen Wang, Chao Lan

  • Cross-Interaction Hierarchical Attention Networks for Urban Anomaly Prediction

    Chao Huang, Chuxu Zhang, Peng Dai, Liefeng Bo

  • Inductive Anomaly Detection on Attributed Networks

    Kaize Ding, Jundong Li, Nitin Agarwal, Huan Liu

  • Robustness of Autoencoders for Anomaly Detection Under Adversarial Impact

    Adam Goodge, Bryan Hooi, See Kiong Ng, Wee Siong Ng

Interpretable

  • Explainable Recommendation via Interpretable Feature Mapping and Evaluation of Explainability

    Deng Pan, Xiangrui Li, Xin Li, Dongxiao Zhu

  • Interpretable Models for Understanding Immersive Simulations

    Nicholas Hoernle, Kobi Gal, Barbara Grosz, Leilah Lyons, Ada Ren, Andee Rubin

  • Learning Interpretable Models in the Property Specification Language

    Rajarshi Roy, Dana Fisman, Daniel Neider

  • Learning Interpretable Representations with Informative Entanglements

    Ege Beyazıt, Doruk Tuncel, Xu Yuan, Nian-Feng Tzeng, Xindong Wu

  • Logic Constrained Pointer Networks for Interpretable Textual Similarity

    Subhadeep Maji, Rohan Kumar, Manish Bansal, Kalyani Roy, Pawan Goyal

  • Recurrent Dirichlet Belief Networks for interpretable Dynamic Relational Data Modelling

    Yaqiong Li, Xuhui Fan, Ling Chen, Bin Li, Zheng Yu, Scott A. Sisson

  • Generating Interpretable Poverty Maps using Object Detection in Satellite Images

    Kumar Ayush, Burak Uzkent, Marshall Burke, David Lobell, Stefano Ermon

  • Interpretable Multimodal Learning for Intelligent Regulation in Online Payment Systems

    Shuoyao Wang, Diwei Zhu

Autoencoder

  • Detecting Adversarial Attacks via Subset Scanning of Autoencoder Activations and Reconstruction Error

    Celia Cintas, Skyler Speakman, Victor Akinwande, William Ogallo, Komminist Weldemariam, Srihari Sridharan, Edward McFowland

  • Aggregating Crowd Wisdom with Side Information via a Clustering-based Label-aware Autoencoder

    Li’ang Yin, Yunfei Liu, Weinan Zhang, Yong Yu

  • Diffusion Variational Autoencoders

    Luis A. Perez Rey, Vlado Menkovski, Jim Portegies

  • Disentangled Variational Autoencoder based Multi-Label Classification with Covariance-Aware Multivariate Probit Model

    Junwen Bai, Shufeng Kong, Carla Gomes

LSTM

  • PewLSTM: Periodic LSTM with Weather-Aware Gating Mechanism for Parking Behavior Prediction

    Feng Zhang, Ningxuan Feng, Yani Liu, Cheng Yang, Jidong Zhai, Shuhao Zhang, Bingsheng He, Jiazao Lin, Xiaoyong Du

Data augmentation

  • Stochastic Batch Augmentation with An Effective Distilled Dynamic Soft Label Regularizer

    Qian Li, Qingyuan Hu, Yong Qi, Saiyu Qi, Jie Ma, Jian Zhang

  • CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot Cross-Lingual NLP

    Libo Qin, Minheng Ni, Yue Zhang, Wanxiang Che

  • Lexical-Constraint-Aware Neural Machine Translation via Data Augmentation

    Guanhua Chen, Yun Chen, Yong Wang, Victor O.K. Li