Related Papers in NeuralIPS 2021 (2021.12.06 - 2021.12.14)
Main Track
Anomaly detection / Outlier / Out-of-distribution
- Online false discovery rate control for anomaly detection in time series - Quentin Rebjock, Baris Kurt, Tim Januschowski, Laurent Callot 
- Detecting Anomalous Event Sequences with Temporal Point Processes - Oleksandr Shchur, Ali Caner Turkmen, Tim Januschowski, Jan Gasthaus, Stephan Günnemann 
- Learned Robust PCA: A Scalable Deep Unfolding Approach for High-Dimensional Outlier Detection - HanQin Cai, Jialin Liu, Wotao Yin 
- Task-Agnostic Undesirable Feature Deactivation Using Out-of-Distribution Data - Dongmin Park · Hwanjun Song · Minseok Kim · Jae-Gil Lee 
- ReAct: Out-of-distribution Detection With Rectified Activations - Yiyou Sun, Chuan Guo, Yixuan Li 
- STEP: Out-of-Distribution Detection in the Presence of Limited In-Distribution Labeled Data - Zhi Zhou, Lan-Zhe Guo, Zhanzhan Cheng, Yu-Feng Li, Shiliang Pu 
- Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models - Keunseo Kim, JunCheol Shin, Heeyoung Kim 
- Single Layer Predictive Normalized Maximum Likelihood for Out-of-Distribution Detection - Koby Bibas, Meir Feder, Tal Hassner 
Interpretable / Explainable
- Self-Interpretable Model with Transformation Equivariant Interpretation - Yipei Wang, Xiaoqian Wang 
- Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling - Naoya Takeishi, Alexandros Kalousis 
- Scalable Rule-Based Representation Learning for Interpretable Classification - Zhuo Wang, Wei Zhang, Ning Liu, Jianyong Wang 
- Dynamic Inference with Neural Interpreters - Nasim Rahaman, Muhammad Waleed Gondal, Shruti Joshi, Peter Vincent Gehler, Yoshua Bengio, Francesco Locatello, Bernhard Schölkopf 
- Understanding Instance-based Interpretability of Variational Auto-Encoders - Zhifeng Kong, Kamalika Chaudhuri 
- Reliable Post hoc Explanations: Modeling Uncertainty in Explainability - Dylan Z Slack, Sophie Hilgard, Sameer Singh, Himabindu Lakkaraju 
- Explaining Latent Representations with a Corpus of Examples - Jonathan Crabbé, Zhaozhi Qian, Fergus Imrie, Mihaela van der Schaar 
Causal discovery
有46篇文章,暂时不整理
Data augmentation
- Learning Debiased Representation via Disentangled Feature Augmentation - Jungsoo Lee, Eungyeup Kim, Juyoung Lee, Jihyeon Lee, Jaegul Choo 
- Data Augmentation Can Improve Robustness - Sylvestre-Alvise Rebuffi, Sven Gowal, Dan Andrei Calian, Florian Stimberg, Olivia Wiles, Timothy Mann 
- Predify: Augmenting deep neural networks with brain-inspired predictive coding dynamics - Bhavin Choksi, Milad Mozafari, Callum Biggs O’May, B. ADOR, Andrea Alamia, Rufin VanRullen 
- How Data Augmentation affects Optimization for Linear Regression - Boris Hanin, Yi Sun 
- AugMax: Adversarial Composition of Random Augmentations for Robust Training - Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, Zhangyang Wang 
- Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data - Liming Jiang, Bo Dai, Wayne Wu, Chen Change Loy 
- Self-Supervised GANs with Label Augmentation - Liang Hou, Huawei Shen, Qi Cao, Xueqi Cheng 
- Explanation-based Data Augmentation for Image Classification - Sandareka Wickramanayake, Wynne Hsu, Mong-Li Lee 
Time series
- SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data - Alicia Curth, Changhee Lee, Mihaela van der Schaar 
- CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation - YUSUKE TASHIRO, Jiaming Song, Yang Song, Stefano Ermon 
- Coresets for Time Series Clustering - Lingxiao Huang, K. Sudhir, Nisheeth K Vishnoi 
- MixSeq: Connecting Macroscopic Time Series Forecasting with Microscopic Time Series Data - Zhibo Zhu, Ziqi Liu, Ge Jin, Zhiqiang Zhang, Lei Chen, JUN ZHOU, Jianyong Zhou 
- Deep Explicit Duration Switching Models for Time Series - Abdul Fatir Ansari, Konstantinos Benidis, Richard Kurle, Ali Caner Turkmen, Harold Soh, Alex Smola, Bernie Wang, Tim Januschowski 
- Online false discovery rate control for anomaly detection in time series - Quentin Rebjock, Baris Kurt, Tim Januschowski, Laurent Callot 
- Topological Attention for Time Series Forecasting - Sebastian Zeng, Florian Graf, Christoph Hofer, Roland Kwitt 
- Adjusting for Autocorrelated Errors in Neural Networks for Time Series - Fan-Keng Sun, Chris Lang, Duane S Boning 
- Probabilistic Transformer For Time Series Analysis - Binh Tang, David S. Matteson 
- Dynamical Wasserstein Barycenters for Time-series Modeling - Kevin C Cheng, Shuchin Aeron, Michael C Hughes, Eric Miller 
- Conformal Time-series Forecasting - Kamilė Stankevičiūtė, Ahmed Alaa, Mihaela van der Schaar 
- Time-series Generation by Contrastive Imitation - Daniel Jarrett, Ioana Bica, Mihaela van der Schaar 
Missing value / Irregular sampled / Imputation
- Identifiable Generative models for Missing Not at Random Data Imputation - Chao Ma, Cheng Zhang 
- What’s a good imputation to predict with missing values? - Marine Le Morvan, Julie Josse, Erwan Scornet, Gael Varoquaux 
- MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms - Trent Kyono, Yao Zhang, Alexis Bellot, Mihaela van der Schaar 
- Assessing Fairness in the Presence of Missing Data - Yiliang Zhang, Qi Long 
- Coresets for Clustering with Missing Values - Vladimir Braverman, Shaofeng H.-C. Jiang, Robert Krauthgamer, Xuan Wu 
- Time-series Generation by Contrastive Imitation - Daniel Jarrett, Ioana Bica, Mihaela van der Schaar 
- CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation - YUSUKE TASHIRO, Jiaming Song, Yang Song, Stefano Ermon 
Sequence
- Duplex Sequence-to-Sequence Learning for Reversible Machine Translation - Zaixiang Zheng, Hao Zhou, Shujian Huang, Jiajun Chen, Jingjing Xu, Lei Li 
- Sequence-to-Sequence Learning with Latent Neural Grammars - Yoon Kim 
- A Constant Approximation Algorithm for Sequential Random-Order No-Substitution k-Median Clustering - Tom Hess, Michal Moshkovitz, Sivan Sabato 
- Pay Better Attention to Attention: Head Selection in Multilingual and Multi-Domain Sequence Modeling - Hongyu Gong, Yun Tang, Juan Pino, Xian Li 
- Contrastively Disentangled Sequential Variational Autoencoder - Junwen Bai, Weiran Wang, Carla P Gomes 
- Detecting Anomalous Event Sequences with Temporal Point Processes - Oleksandr Shchur, Ali Caner Turkmen, Tim Januschowski, Jan Gasthaus, Stephan Günnemann 
Heterogeneous
- RelaySum for Decentralized Deep Learning on Heterogeneous Data - Thijs Vogels, Lie He, Anastasia Koloskova, Sai Praneeth Karimireddy, Tao Lin, Sebastian U Stich, Martin Jaggi 
- Distilling Meta Knowledge on Heterogeneous Graph for Illicit Drug Trafficker Detection on Social Media - Yiyue Qian, Yiming Zhang, Yanfang Ye, Chuxu Zhang 
- Distributed Machine Learning with Sparse Heterogeneous Data - Dominic Richards, Sahand Negahban, Patrick Rebeschini 
- FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout - Samuel Horváth, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, Nicholas Donald Lane 
Recurrent neural network / RNN / LSTM / GRU
- Charting and Navigating the Space of Solutions for Recurrent Neural Networks - Elia Turner, Kabir Vinay Dabholkar, Omri Barak 
- Self-Instantiated Recurrent Units with Dynamic Soft Recursion - Aston Zhang, Yi Tay, Yikang Shen, Alvin Chan, Shuai Zhang 
- SBO-RNN: Reformulating Recurrent Neural Networks via Stochastic Bilevel Optimization - Ziming Zhang, Yun Yue, Guojun Wu, Yanhua Li, Haichong Zhang 
- (需要看看) On the Provable Generalization of Recurrent Neural Networks - Lifu Wang, Bo Shen, Bo Hu, Xing Cao 
- Recurrence along Depth: Deep Convolutional Neural Networks with Recurrent Layer Aggregation - Jingyu Zhao, Yanwen Fang, Guodong Li 
- Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems - Jimmy T.H. Smith, Scott Linderman, David Sussillo 
- Noisy Recurrent Neural Networks - Soon Hoe Lim, N. Benjamin Erichson, Liam Hodgkinson, Michael W. Mahoney 
- Combining Recurrent, Convolutional, and Continuous-time Models with Linear State Space Layers - Albert Gu, Isys Johnson, Karan Goel, Khaled Kamal Saab, Tri Dao, Atri Rudra, Christopher Re 
- Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks - Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum, Tom Goldstein 
- (需要看看) Learning and Generalization in RNNs - Abhishek Panigrahi, Navin Goyal 
- Framing RNN as a kernel method: A neural ODE approach - Adeline Fermanian, Pierre Marion, Jean-Philippe Vert, Gérard Biau 
- Structured in Space, Randomized in Time: Leveraging Dropout in RNNs for Efficient Training - Anup Sarma, Sonali Singh, Huaipan Jiang, Rui Zhang, Mahmut Kandemir, Chita Das 
Autoencoder
- Statistical Regeneration Guarantees of the Wasserstein Autoencoder with Latent Space Consistency - Anish Chakrabarty, Swagatam Das 
- Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling - Naoya Takeishi, Alexandros Kalousis 
- On the Value of Infinite Gradients in Variational Autoencoder Models - Bin Dai, Li Kevin Wenliang, David Wipf 
- (需要看看) Shape your Space: A Gaussian Mixture Regularization Approach to Deterministic Autoencoders - Amrutha Saseendran, Kathrin Skubch, Stefan Falkner, Margret Keuper 
- Neighborhood Reconstructing Autoencoders - Yonghyeon LEE, Hyeokjun Kwon, Frank C. Park 
- Model Selection for Bayesian Autoencoders - Ba-Hien Tran, Simone Rossi, Dimitrios Milios, Pietro Michiardi, Edwin V Bonilla, Maurizio Filippone 
- Clockwork Variational Autoencoders - Vaibhav Saxena, Jimmy Ba, Danijar Hafner 
- A Contrastive Learning Approach for Training Variational Autoencoder Priors - Jyoti Aneja, Alex Schwing, Jan Kautz, Arash Vahdat 
- Contrastively Disentangled Sequential Variational Autoencoder - Junwen Bai, Weiran Wang, Carla P Gomes 
- Permutation-Invariant Variational Autoencoder for Graph-Level Representation Learning - Robin Winter, Frank Noe, Djork-Arne Clevert 
Others
- Robust and Fully-Dynamic Coreset for Continuous-and-Bounded Learning (With Outliers) Problems - Zixiu Wang, Yiwen Guo, Hu Ding 
- Automatic Unsupervised Outlier Model Selection - Yue Zhao, Ryan Rossi, Leman Akoglu 
- Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration - Yu Wang, Jingyang Lin, Jingjing Zou, Yingwei Pan, Ting Yao, Tao Mei 
- Drop-DTW: Aligning Common Signal Between Sequences While Dropping Outliers - Nikita Dvornik, Isma Hadji, Konstantinos G. Derpanis, Animesh Garg, Allan Douglas Jepson 
- Consistent Estimation for PCA and Sparse Regression with Oblivious Outliers - Tommaso d’Orsi, Chih-Hung Liu, Rajai Nasser, Gleb Novikov, David Steurer, Stefan Tiegel 
- Approximate optimization of convex functions with outlier noise - Anindya De, Sanjeev Khanna, Huan Li, Hesam Nikpey 
NeurIPS 2021 Datasets and Benchmarks Accepted Papers
Anomaly detection / Outlier / Out-of-distribution
- SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation - Robin Chan · Krzysztof Lis · Svenja Uhlemeyer · Hermann Blum · Sina Honari · Roland Siegwart · Pascal Fua · Mathieu Salzmann · Matthias Rottmann 
- (要看一下) Revisiting Time Series Outlier Detection: Definitions and Benchmarks - Henry Lai · Daochen Zha · Junjie Xu · Yue Zhao · Guanchu Wang · Xia Hu 
Interpretable / Explainable
- Chaos as an interpretable benchmark for forecasting and data-driven modelling - William Gilpin 
- Synthetic Benchmarks for Scientific Research in Explainable Machine Learning - Yang Liu · Sujay Khandagale · Colin White · Willie Neiswanger 
- FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark - Mingjie Li · Wenjia Cai · Rui Liu · Yuetian Weng · Xiaoyun Zhao · Cong Wang · Xin Chen · Zhong Liu · Caineng Pan · Mengke Li · yingfeng zheng · Yizhi Liu · Flora Salim · Karin Verspoor · Xiaodan Liang · Xiaojun Chang 
- Teach Me to Explain: A Review of Datasets for Explainable Natural Language Processing - Sarah Wiegreffe · Ana Marasovic 
causal discovery
- Systematic Evaluation of Causal Discovery in Visual Model Based Reinforcement Learning Nan Rosemary Ke · Aniket Didolkar · Sarthak Mittal · Anirudh Goyal ALIAS PARTH GOYAL · Guillaume Lajoie · Stefan Bauer · Danilo Jimenez Rezende · Michael Mozer · Yoshua Bengio · Chris Pal
Time series
- Revisiting Time Series Outlier Detection: Definitions and Benchmarks - Henry Lai · Daochen Zha · Junjie Xu · Yue Zhao · Guanchu Wang · Xia Hu 
- Monash Time Series Forecasting Archive - Rakshitha Godahewa · Christoph Bergmeir · Geoffrey Webb · Rob Hyndman · Pablo Montero-Manso 
- Benchmarking the Robustness of Spatial-Temporal Models Against Corruptions - Chenyu Yi · SIYUAN YANG · Haoliang Li · Yap-peng Tan · Alex Kot 
- 1. Main Track- 1.1. Anomaly detection / Outlier / Out-of-distribution
- 1.2. Interpretable / Explainable
- 1.3. Causal discovery
- 1.4. Data augmentation
- 1.5. Time series
- 1.6. Missing value / Irregular sampled / Imputation
- 1.7. Sequence
- 1.8. Heterogeneous
- 1.9. Recurrent neural network / RNN / LSTM / GRU
- 1.10. Autoencoder
- 1.11. Others
 
- 2. NeurIPS 2021 Datasets and Benchmarks Accepted Papers